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Abstract—In this paper, we look at multiple autonomous
underwater vehicles tracking a target with uncertain communi-
cation between the robots. We model these robots with realistic
dynamics based on the Cornell University 2019 competition
vehicle. We are able to successfully maintain formation around a
moving target by utilizing Extended Kalman Filters to estimate
robot positions when communication is lost within the network.
The target tracking is stable in simulation when the target
rapidly changes speed and direction. Some stability is lost in
the formation when the speed of the target is large or when the
number of robots exceeds six.

Index Terms—multi-robot, underwater robotics, leader, fol-
lower, distributed formation control, robots

I. INTRODUCTION

Autonomous Underwater Vehicles are deployed in a wide
variety of environments for a range of applications. Some
AUVs are deployed in shallow water for hydrographic survey-
ing, pipeline inspection, and scientific sampling. Other AUVs
are deployed in deep water, up to 6000 meters, for mapping,
environmental surveying, and search and salvage operations.
Underwater vehicles allow us to explore the shallows and
depths of the ocean with minimal distribution to the ecosystem
and without the need for a more costly Human Operated
Vehicle (HOV).

One of the main challenges in underwater exploration is
the lack of communication. When underwater, the vehicle has
no Global Positioning System (GPS) or Wi-Fi communication
abilities. The most reliable form of communication underwater
is through the use of acoustic modem transducers. However,
acoustic communication is range limited (often limited to just
one or two kilometers) and has a severely limited bandwidth.
When AUVs explore deep water they have to be deployed
without communication to any ground or boat station due
to the severely limited communication range. These acous-
tic communication limitations make deploying a centralized
control algorithm for multiple underwater vehicles highly
challenging, necessitating the need for a decentralized control
that is robust to communication drops and limited sensor
measurements.

II. BACKGROUND & RELATED WORK

A. Problem Background
For a long time, researchers have been interested in studying

the habits, patterns and survival tactics of different underwater

animals. Life underwater is something that remains a mystery
to this day as humans are incapable of fully exploring the
depths of the oceans. Tracking animals such as sharks, turtles,
and more recently whales, has allowed us to better observe
animal behaviors previously unknown and to track migration
patterns. With recent advancement in technology, robots have
been used to overcome this problem to some extent. Thus
far, underwater animal tracking has been limited to only one
AUV, with the animal being the leader and the robot being the
follower.

Distributed algorithms and control techniques have opened
up new avenues to carry out underwater research. The use
of multiple AUVs to track a single target could allow us to
gather more information about the animal and its surroundings,
provide redundancy of data collection, as well as to be able to
better track large animal species. It is also of importance when
tracking an animal that the following AUVs do not interfere
with the animal and maintain a reasonable distance.

For our project, we were interested in using distributed
techniques to track the movement of a shark in open water.
The main difficulty in this task was keeping up with the speed
of the shark which are capable of swimming at speeds of up
to 31 mph or 13.85 meters per second. Another obstacle was
dealing with the lack of consistent communication underwater
without which it would be hard to maintain a robust formation
around the shark.

B. Literature Review

The deployment of multi-Autonomous Underwater Vehicles
is not a widely adopted practice due to the many challenges
of these types of systems. With communication being the
main complicating factor of deploying multiple AUVs, Sotzing
and Lane propose a multi-agent mission architecture in order
for the vehicles to be robust to communication break downs
while still completing their overall mission. Using acoustic
communication is highly prone to corrupt messages between
vehicles and often times the vehicles will go out of range
of each other for prolonged periods of time. In [1], the
authors compare the performance of acoustic transmissions
based on different aspects like quantization and cycle time
on the frequency response of the system. They noted that
to track high dynamic target, there needs to be a tradeoff



between quantization for low cycle time. The authors claim
that “Oceanographic pursuit” is likely moving towards group
autonomy as is already being done in surface and aerial
vehicles. In [2], the authors implement a decentralized multi-
agent structure where each vehicle independently does mission
planning of the other agent when a message has not been
successfully received after a set time frame. This prediction
adds overhead to the computation of each vehicle, but allows
for successful mission completion even when goal marking
messages are not received. It is of note that Sotzing and
Lane found that the mission was prone to failure in their
experimental trials when prediction was not accurate.

Tracking of an animal can be describe most closely to be a
leader-follower architecture where the shark is an autonomous
leader, tagged with an acoustic pinger, and the pursuit robots
are the followers. In [3], Xiang et al. explore a leader-follower
based control algorithm for deploying a formation underwater
robots for pipeline inspection. In this paper, follower AUVs
follow a parallel path altering speed to provide separation.
Simulations involve only three robots but have the advantage
of only requiring communication links between the follower
and leader and not communication between followers. Obsta-
cle collision avoidance is not considered. Obstacle avoidance
is taken into consideration in the work conducted by Lin et
al in [4]. They deployed two REMUS 100 AUVs to track
a tiger shark. Because of the unreliability of the acoustic
communication between the shark and each AUV, they im-
plemented a particle filter on the relative distance between
each agent and the target. For the tracking control, they used
two different controllers in order to plan a collision free path
to a boundary around the shark and then another controller to
circumnavigate the shark to collect data. In order to achieve
collision avoidance between the agents circumnavigating the
target, they implemented A* path planning on each agent.

The work done in [5] describes a leader-follower formation
control algorithm for multiple underwater vehicles. The paper
uses surface vehicles to conduct the experiment but enforces
constraints that would be faced by underwater vehicles. Only
the leader broadcasts its own position that is used by the
followers to maintain a formation; the formation also rear-
ranges itself if one of the followers is lost or a link breaks.
Another interesting feature of this algorithm is that if the
communication completely disrupts, the robots start acting
as independent robots and carry out individual tasks. The
algorithm can scale up with the number of robots; however,
the only limitation is based on the range of the acoustic range
of the leader.

Another key aspect of leader follower distributed control
deals with maintaining consensus given information transmis-
sion failure. This is a likely event in an underwater environ-
ment as we have noted previously. In [6], Pan et al. shows suf-
ficient conditions for the convergence of a distributed leader-
follower control architecture given information packet drop
off. Their results show that even with high probability of data
loss, consensus is still met albeit with a sometimes significant
time penalty. Furthermore, the leader-follower architecture in

underwater robotics has to deal with redundancy of formation
with loss of communication between robots. One approach
taken by [7] uses a multiple pseudo-leader architecture. In this
system there is only one true leader, but many pseudo leaders
that maintain connections with subgroups of robots. This paper
shows provable disturbance rejection properties of a H2/H8

feedforward controller compared to that of more typical LQR
which exhibits considerable drift under communication errors.

Significant research has been done in this problem like in
[8] where the authors used optimal control to deploy a network
underwater to track an unknown target. Geometric traversals
are used to track the coverage of the sensor network. The
authors also employ dynamics of the underwater robots and
sensors in this paper. The sensors are modeled as disks that
have varying radius to account for the changing dynamics
underwater. The control technique is also implemented and the
results show that optimal control increases the performance
of the sensor network. The optimal network are capable of
generating Pareto optimal trajectories that minimize energy
consumption.

A key challenge to the modeling of AUVs underwater are
the dynamical uncertainties in the environment. Attempting to
model these effects are computationally intensive and struggle
when used on systems with many robots. In [9], the authors
propose an adaptive PD controller scheme for multi-robot
underwater systems. With this, they use a Lyapunov-like
function combined with a 6-DOF simulation to prove stability
characteristics of this controller. With only a model of the
gravitation and buoyancy characteristics underwater they are
able to derive this controller. They simulate their control algo-
rithm on the Omni Directional Intelligent Navigator (ODIN),
a 6-DOF underwater robot from the University of Hawaii.

A large majority of previous work on limited communi-
cation multi robot systems is in the application of coverage
exploration. Mosteo et al work with limited communication
over a large area by ensuring that no agent is out of range of
any other agent in [10]. This method of deployment works by
keeping the network connected by ensuring that messages can
be chain passed to other robots that may need the information.
However, this method assumes that if an agent is within
communication range of another agent, there is reliable and
high bandwidth communication between the two, which is not
necessarily the case in the application underwater.

III. PROBLEM FORMULATION

We set out to achieve three main goals for our project.
Firstly, we wanted to model the dynamics of AUVs realis-
tically so that the distributed techniques could be built and
deployed in real scenarios. Instead of using simple single
integrator dynamics, we employed full six degree of freedom
dynamics that also included the hydrodynamics of the robots.
Secondly, we wanted to implement a distributed controller
for tracking of the sharks. The controller would allow the
robots to stay a set distance away from the shark and maintain
the maximum possible distance between one another for best
coverage around the shark. Thirdly, low communication is a



major challenge underwater. We wanted to test cases where
the robots lose communication between one another but still
maintained their positions around the shark. For this, we used
Extended Kalman Filters that would estimate the state of the
robots around the shark when communication was lost.

A. Vehicle Dynamics

Many distributed controllers for multi-robot networks uses
simplified dynamics, such as single integrator or holonomic
drive robots. The dynamics of Autonomous Underwater Ve-
hicles is more complicated due to the six degrees of freedom
and hydrodynamic constraints. AUVs in development have
adopted many different shapes and control methods. For
example, the REMUS vehicle developed at the Woods Hole
Oceanographic Institute utilizes an active ballast for depth
control, a single thruster at the rear for propulsion, and pivoting
fins for direction control. The REMUS has been successfully
deployed for shark tracking missions, but lacks the high degree
of maneuverability we desire for higher speed tracking and
formation control. New AUVs have been in development that
utilize a more drone like design, utilizing thrusters for all axes
of control. For this project, we simulate the dynamics of the
AUV built by Cornell University in 2019 for use in the AUVSI
RoboSub competition, Figure 1.

Fig. 1. Cornell University 2019 AUV, Odysseus

This AUV is fitted with eight Blue Robotics T200 thrusters
for control, two iDS uEye cameras, three Teledyne Marine
Reson hydrophones, a custom acoustic transducer, a Micros-
train 3DM-GX4 -25 Inertial Measurement Unit (IMU), and a
Teledyne Marine Pathfinder Doppler Velocity Log (DVL). For
this project we will be working under the constraint that the
acoustic transducer can transmit data at a rate of at least 100
bytes per second. We are also going to assume that the DVL is
able to accurately provide the vehicle position at an accuracy
of 200mm.

In order to simulate accurate dynamics of the vehicle,
we designed a low level Linear Quadratic Regulator (LQR)
controller for each vehicle to run onboard at a faster rate than
the distributed formation controller. The physical properties of
the vehicle that were used to develop the LQR controller are:

m = 31.75 kg (1)

V = 0.0193m3 (2)
Cd = 0.05 (3)

ρ = 998.2
kg

m3
(4)

I =

2.03 0 0
0 2.13 0
0 0 0.7625

 (5)

where m is the mass, V is the volume, Cd is the drag
coefficient, ρ is the water density, and I is the moment of
inertia tensor. The T200 thrusters are able to provide up to 5
kgf of thrust in the forward direction, and up to 4 kgf of thrust
in the reverse direction. For the controller, we will be using
thruster values interpolated from empirical data gathered from
the thrusters at 16V, as seen in Figure 2.

Fig. 2. Blue Robotics T200 thruster curve at 16V, gathered from empirical
test data.

The mass matrix of the vehicle is as follows:

M = Mrb +MA (6)

Mrb =

[
mI3x3 0

0 I

]
(7)

MA =


Xu 0 0 0 0 0
0 Yp 0 0 0 Yr
0 0 Zw 0 Zq 0
0 0 0 Kp 0 0
0 0 Mw 0 Mq 0
0 Nv 0 0 0 Nr

 (8)

The hydrodynamic damping matrix is as follows:

D = Dl +Dq (9)

Dl = diag
([
Xu Yv Zw Kp Kq Nr

])
(10)

Dq = diag
([
Xuu Yuu Zww Kpp Kqq Nrr

])
(11)

Where the hydrodynamic constants are: Xu, Yv = 0, Zw =
50, Kp,Kq = 0, Nr = 10, Xuu = 85.625, Yvv = 80, Zww =
150, Nrr = 15, and Kpp,Kqq = 0.



We define the vehicle state with positive x being forward
and positive z being up in depth. θ, φ, and ψ are the roll,
pitch, and yaw of the vehicle respectively.

x = [x y z θ φ ψ

ẋ ẏ ż θ̇ φ̇ ψ̇]T
(12)

Lastly, the control input distances (m) from the center of
buoyancy are defined in a matrix:

L =


1.0 1.0 0 0 0
0 01.0 1.0 0
0 0 0 0 1.0
0 0 0.0222 0.0222 0.2169

0.0302 0.0302 0 0 0.2201
−0.3205 0.3205 0.5178 −0.3078 0

0 0 0
0 0 0

1.0 1.0 1.0
0.2046 −0.2046 −0.2169
−0.3705 −0.3705 0.2201

0 0 0



(13)

For simplicity, we are assuming that the Coriolis effects
are small and can be interpreted as C = I6x6. The linearized
system matrices can then be approximated as:

A =

[
06x6 I6x6
06x6 −M−1(C +D)

]
(14)

B =

[
06x8
M−1L

]
(15)

C =
[
I6x6 06x6

]
(16)

D = 0 (17)

With these linearized system dynamics matrices, we solve
the continuous Ricatti equation and obtain the LQR K matrix
for our controller. The performance of the resulting LQR
controller can be seen in Figure 3. It can be seen that when
two states (x and y) change, this also adversely affects the
other states as well. Moving in x and y causes a temporary
drop in depth and slight deviations in roll, pitch, and yaw. This
is physically reasonable to what is seen on a real vehicle in
the water. The vehicle is able to successfully achieve the new
desired state over approximately 20 seconds.

B. State Estimation

In order for our system to work in a limited communication
environment, we must deal with the possibility of loss of
communication between robots. Each robot transmits its global
position to be received by the other AUVs. This information
updates the state estimates of the robot such that it can predict
the position of the other robots and position around the shark
to ensure we have distributed and equitable coverage of the
target.

In this project, we assume that the robots use an acoustic
pinger tagged to the shark’s dorsal fin to triangulate their rela-
tive distance to the shark. They broadcast their own positions
to the other robots so that they can optimally adjust their

Fig. 3. States of the vehicle using the LQR controller with a reference
command of x = 2, y = 1.

positions around the shark. Each robot keeps an estimate of
each of the other robots. This additional computation onboard
adds computational time to the entire system, which increases
with the number of robots in the network.

To estimate the state of the robots that lose communication
with other robots while tracking the shark, we employ an
Extended Kalman Filter (EKF). This filter was chosen due to
the nonlinear dynamics of the AUVs. The filter represents the
posterior state belief at t, bel(xt), with a Gaussian distribution
with mean µt and covariance σt. When a Gaussian prior is
propagated through non-linear dynamics, there is no guarantee
that the results are Gaussian as well. Due to this, the dynamics
are linearized around a point that is the most likely argument
of each function, namely the mean. Propagating through
linearized functions with a linearization point far away from
the means results in the accumulation of error.

When there is successful communication between the robots
and a new measurement of a robots state is received, both
the predict and update steps of the EKF are executed to
update the estimate of the robot. When a robot either stops
transmitting data or there are errors receiving the correct data,
only the predict step of the EKF is executed to best predict
how the other robots are moving. This new state estimate
is then used to calculate the optimal positions around the
target. The predict and update equations are below, where f()
is the nonlinear dynamics function and g() is the nonlinear
measurement function.

Predict:

µt|t−1 = f(µt−1|t−1)

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1

(18)

Update:

Kt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1

µt|t = µt|t−1 +Kt(yt − g(µt|t−1, ut))

Σt|t = Σt|t−1 −KtCtΣt|t−1

(19)

For the purposes of our project, in order to have a difference
in the nonlinear dynamics function used by the simulation



to propagate the dynamics of each vehicle forward in time
and the dynamics function used by the state estimator, the
propagation time step used to propagate the dynamics in
the estimator is much larger than that used for dynamic
propagation. This change between the two dynamic functions
is in an effort to make the simulator more realistic. Using
the same timestep causes the predict step to be nearly perfect
in the absence of noise, which is unrealistic for a physical
system.

C. Formation Control

To position the robots optimally around the shark, we
implement a scoring method to find the optimal positions of
each robot around the target. Each robot knows its own relative
position to the shark and has an estimate of the location of all
the other robots. With this information, each robot calculates
its optimal position around the shark by giving a score to
every position at the desired distance around the shark. This
score is calculated by summing the distances from the robots
current position to the optimal position it is checking, and
the smallest distance of all the other robots position estimates
to the tracking circle around the shark. The lowest scoring
position is assumed to be the optimal point on the tracking
circle for that robot to track to. This scoring is done by each
robot in the network with its respective state estimates for the
other robots.

When all the robots agree on the same optimal positions for
all the robots, the system is stable. This scoring method works
successfully even when not all the robots agree on the same
optimal positions. When there is variance in the calculated
optimal positions between the robots, one or more of the robots
may move to a location on the tracking circle that was not
anticipated by the other robots, but this is easily adapted for
in the next time step by all the robots. This causes the robots
to “rotate” in formation around the shark, but formation is
successfully held around the target.

Algorithm 1 Formation Control Algorithm
Input: Relative position to the shark; broadcasted position of

other robots
Output: Optimal position around the shark

for iteration = 1, 2, . . . do
for robot = 1, 2, . . . , N do

Calculate the desired positions around the shark
Calculate distance to desired positions and give them
scores corresponding to the distance
opt pos = des pos(min(score))

end for
end for

IV. EXPERIMENTAL RESULTS & SIMULATIONS

Our simulation of the multi AUV system tracking a target
was developed using MATLAB. The nonlinear vehicle dynam-
ics described in Section III-A were simulated using ode45
with time steps of δt = 0.001s for dynamic propagation

and δt = 0.05s for the dynamics function f() used in
state estimation. In our simulation, the robots broadcast their
positions to the other robots every one second. The target shark
was able to be controlled in the simulation by user input using
the computer’s arrow keys. This allowed for us to easily find
the limitations of the tracking capabilities of the network.

When there is no communication loss within the robot net-
work, the robots successfully maintain a very stable formation
around the shark. The optimal positions around the shark for
each robot does not change in time and each robot maintains
its own relative position around the shark. This is seen in
Figure 4 where the shark is represented in green and the
following robots are seen in blue. The shark in this simulation
maintained a constant speed throughout the simulation but
changed directions.

Fig. 4. Tracking of the shark (green) by three robots (blue) with constant
target speed.

For this simulation, we defined communication loss as a
robot that fails to successfully transmit its position to the
other robots. For comparison, we ran the same leader path
simulation as above but added in two different times of
communication loss. One robot stops successfully transmitting
data at 50 seconds and a second at 200 seconds. The results of
this simulation can be seen in Figure 5. Whenever a robot loses
communication, all the robots appear to rotate in formation
around the shark. This rotation behavior appears to continue
until a steady state formation is once again found. This be-
havior could arise because, once a robot loses communication
and all the robots must rely on their state estimates of that
robot to find the optimal positions, if any of the robots try
to go to a different optimal position around the shark, all
the other robots must adapt to the change in formation. This
change continues until all the robots once again agree on the
same optimal positioning around the shark. In our simulations,
all three robots were able to successfully maintain a constant



distance around the shark in a relatively stable formation.

Fig. 5. Tracking of the shark (green) by three robots (blue) with constant target
speed with two instances of communication loss, at t = 50s and t = 200s.

To test the robustness of our formation controller in the
presence of more communication loss as well as measurement
noise between the robots, we ran the same three robot tracking
controller with additional communication loss of the third
robot from t = 100 − 250 seconds, such that there is 50s
where all three robots are not communicating with each other.
There was also added Gaussian noise in the data transmitted
between the robots, with a mean of zero and a variance of
0.01. The results of this simulation can be seen in Figure 6.

Even when all three robots lose communication with each
other, the formation is successfully held among all three
robots. In the presence of noise in the transmitted data, the
EKF was successfully able to filter out most of this noise.
However, it can be seen in the paths of the robots that there
is slight wavering of the robots about their nominal optimal
paths. This wavering does not greatly affect the robots agreeing
on the same optimal positions around the shark when the
communication network between the robots is not changing.
However, as can be seen in the path of the robots at the top
of the trajectories, two of the robots suddenly changed paths
around t = 260s. This change in the path happens right after a
robot comes back into communication with the network. Two
of the robots appeared to try to go to a different formation than
the third robot, but the formation was able to quickly recover
after approximately 15s. This behavior was also seen in other
simulations where robots reestablished communication with
the network, even without noise in the communication. This
behavior of optimal formation disagreement is likely due to
the state estimate of the robot reestablishing communication
being updated with the latest measurement. The added noise in
the measurement did not greatly affect the overall performance
of the system.

Fig. 6. Tracking of the shark (green) by three robots (blue) with constant target
speed with two instances of communication loss, at t = 50s, t = 100−200s,
and t = 200s. Gaussian noise is also added to the data transmitted between
the robots.

We ran the same simulation again but instead of the shark
travelling at constant speed and not changing directions much,
we controlled the shark to rapidly change both speed and
direction. Throughout the simulation, all three robots were able
to maintain a formation well around the shark, however, with
the rapidly changing speed of the shark, some robots would
get closer than the desired distance and others further. This
change in distance often happened when the shark quickly
accelerated and the robot dynamics limited them by not
allowing the robots to change speeds as quickly as the shark
did. With all the directional and speed changes of the target,
we observed the formation rotating a lot more around the
shark, especially when more robots lost communication with
the network. Though the overall formation of the network was
less stable with a rapidly changing target and more robots
not communicating, all the robots were able to mostly stay in
formation and no collisions were observed.

The typical cruising speed of a shark is approximately 2
m/s, but they can swim up to 14 m/s. The previous simulations
above were conducted at relatively low target speeds, ranging
from 0.75 m/s to 2 m/s. In Figure 8, we simulated a shark that
travelled faster than cruising speed. When the shark exceeded
3 m/s the following robots were not able to keep up with the
shark as the robots maximum speed is not as fast as that of the
sharks. This caused our robots to lose formation around the
shark. However, when the shark stopped, the robots were able
to successfully recover formation around the shark to continue
their leader-follower tracking. Our approach does not have any
collision avoidance so, in regaining formation around the shark
one of the robots (the one which had lost communication),
collided briefly with the shark.

Our formation controller works for an arbitrary number of



Fig. 7. Tracking of the shark (green) by three robots (blue) with rapidly
varying shark speed and direction with two instances of communication loss,
at t = 50s and t = 200s.

Fig. 8. Tracking of the shark (green) by three robots (blue) with rapidly
varying shark speed and direction with two instances of communication loss,
at t = 50s and t = 200s.

robots, and we have successfully simulated this for up to six
robots. With an increasing number of robots, the formation
appears to lose stability around the shark. There is more
observed oscillations in each of the robots about their optimal
position and there is also more rotation around the target.
For most of our simulations, the formation is able to be
successfully held for shark speeds under 2.2 m/s. However
under certain circumstances, a failure in the formation control
has been observed, such as in Figure 9. This simulation had up
to three of the five robots without communication at a time,

and at t = 300s one robot goes back online while another
robot loses communication. Shortly after this communication
flip two of the robots appear to have converged to the same
optimal position around the shark. This disagreement in opti-
mal positioning is normally able to be adapted for by the other
robots, as seen in the previous simulations. However, in this
simulation, the formation failed and the robots were unable to
recover. The exact cause for this formation failure is unknown
and we have not been able to successfully recreate it.

Fig. 9. Tracking with five robots and communication loss at t = 50− 300s,
t = 100s, t = 200s, and t = 300s. Around t = 310s, the formation is lost
and is unable to be recovered.

V. CONCLUSIONS

Our leader-follower formation control is successfully able to
allow Autonomous Underwater Vehicles to track a shark. For
a shark travelling at cruising speeds the formation is able to
adapt to communication losses in the network by keeping track
of state estimates of each of the robots. The formation stability
is lost for increasing speed of the target and for an increase
in the number of tracking robots. When formation is lost,
the robots are often able to recover and continue successful
tracking. The method scales with a larger number of robots
but the computation time increases as well.

These results lead to many possible followups and exten-
sions. We would particularly like to extend this implementation
to work in a 3D environment. We would also like to integrate
orientation of the AUVs into the tracking of the shark in order
to best utilize the mobility of the vehicles. Another extension
would be collision avoidance in order to guarantee there is
no undesirable collisions with either the shark or between the
robots. Further analysis can be carried out to determine the
optimal number of robots that give the best performance when



tracking a shark including the optimal distance from the shark
given our sensor and communication capabilities.
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