
The Spikeball Woes or the Spikeball Woohoos?
Only Time Will Tell...

Sam Beaulieu, Kristina Beck, Aubrey Kingston, Eric So
CS225A: Experimental Robotics

Spring 2020
Stanford University

Abstract— This paper is a review of using SAI2 simulation software
to create four spikeball- playing robot arms. We use ball tracking and
prediction, position and orientation control, and game play logic to
simulate a realistic game of spikeball between four stationary, seven-
degree-of-freedom robot arms. The following paper will discuss the
final implementation of this simulation along with its challenges, such
as controlling all four separate robot arms with one controller, reducing
computational complexity, and creating an effective state machine.
Overall, this project was challenging yet rewarding once we were able
to get all the various parts of our simulation working together.

I. FINAL IMPLEMENTATION

A. Background

Fig. 1. Overhead view of Spikeball game play set up with ball initialized
in the bottom left then sent diagonally across to Robot 0 to start the game.

The final implementation of this project incorporated four
“Panda” robotic arms, each with a stationary base, seven rotational
joints, and seven degrees of freedom. The four arms were located
equidistant from a net. Each arm was located in one of the four
quadrants around the net, positioned 1.0 meters away in both the
x- and y- directions. For the rest of this paper, the robot arm in the
positive x, positive y quadrant will be referred to as robot 0, with
the rest labeled as robot 1, robot 2, and robot 3 traveling counter-
clockwise from robot 0. The goal of this project was to have the
four robotic arms play a game of Spikeball. Robot 0 and robot 3 are
one team while robots 1 and 2 are another team, shown in Figure
1 in red and blue, respectively.

The following list summarizes the key components of our final
implementation.
• Setting up the simulation interface
• Establishing the redis server client and position/ orientation

control
• Game play logic

B. Simulation and Environment

Other than the four robot arms pulled in to act as players for
the game, the environment included a standard sized spikeball net
at the center with a diameter of approximately 1 meter. The net
object was made using BLENDER software that led to it having a
complex mesh. Thus, in this simulation, the net is shown visually
while the collision mesh is a simple box. The ground and walls
are also box meshes with the grass and sky just there for visuals.
Finally, the ball was originally a sphere made in BLENDER but then
changed later on to a sphere mesh in the .urdf file. This was done
to simplify the object from the high-resolution mesh made from
BLENDER. The ball is 0.12 meters in diameter with a low mass to
limit the momentum transfer to the robots.

During game play, there only needs to be one robot in action as
it responds to the ball. In order to do this, we put commands in
place such that the robots will remain in their current position after
hitting the ball. This reduction had to be done in both the controller
code as well as simulation in order to achieve the desired cutback
in computation and processing costs.

C. Game Play Logic

The overall rules of Spikeball are as follows.
• The four players work in teams of two
• A player hitting the ball may either return it to the other team

or pass to its partner
• If the player chooses to return the ball to the other team, it

must bounce off the central net
• If the player decides to pass, the team can have up to three

total touches (or two passes) before the ball must be returned
to the other team

In order to maintain these rules, we used several booleans to act
as flags in order to track if we want a robot to pass or spike, if
the ball is coming from a pass or spike, if we want to initiate ball
tracking, and if we want to predict final ball position. We also used
a function to use the general direction of the movement of the ball
to determine which robot to activate next. When a robot receives
a ball off the net, we call a function to randomize whether a robot
immediately spikes the ball back to the opposing team or passes
the ball to its teammate. If the robot passes to its teammate, we
then use another randomizing function to determine the number of
passes the team will perform (one or two) before returning the ball.
These functions use the default random engine class. Meanwhile, if
we determined that a robot should be moved into position to receive
a ball, we used two functions to determine the desired end-effector
position and orientation.

D. Desired Robot

To determine the next robot to control, we took into account the
ball’s velocity as well as whether or not the ball was being passed



or had just been spiked. Depending on these flags, we would use
the sign of the ball velocity to know know quadrant the ball would
travel to, and thus, the desired robot. Otherwise, we would switch
the robot based on the team. For example, if Robot 0 had just hit
the ball and it was known to be passing, the desired robot would
be Robot 3, as both are on red team.

E. Desired Position and Orientation

In order to find what position and orientation a robot needs
to be at in order to either pass or spike the ball, we wrote two
functions that take in the ball’s initial position and velocity as well
as the ball’s target position after it is hit. We first wrote these in
MATLAB in order to visualize its trajectories, as seen in Figure 2.
As discussed in the Challenges section, we had to ignore gravity

Fig. 2. Matlab visualization of ball’s trajectory in order to confirm the
accuracy of the desired position and orientation functions. The middle circle
represents the net and the other four circles represent the reachable radius
around each robot.

for our simulation. Thus, we changed these functions to assume
straight line trajectory of the ball, decreasing the computation power
necessary to solve the system of equations.

To calculate the desired end effector of the robot, we first
projected the trajectory onto the X-Y plane. Since no forces are
acting on the ball in this plane the ball will track a straight-line
trajectory. Since each robot has a limited workspace, we cannot
arbitrarily send the end effector to meet the ball. We thus draw a
reachable radius around the robot and find the intersection of this
circle with the incoming linear trajectory in XY. The intersection
points in x is given by:

x=
a+bM−BM±

√
−a2M2+2abM−2aBM−b2+2bB−B2+M2r2+r2

M2+1

Where a is the global x-coordinate of the center of the robot,
b is the global y-coordinate of the robot, M is the X-Y slope
of the incoming ball, B is the Y-intercept of the incoming ball,
and finally r is the reachable radius of the robot. This quadratic
expression has two solutions, we select the real solution that
minimizes the L2 norm between the current ball position and the
predicted intersection with the reachable radius. We can then select
y via y =Mx+B.

Given a real solution exists (the ball may not ever pass through
the workspace of the robot, thus a solution does exist) we can then
find the z intercept. To find the z position of the end effector we
derived the equations of motion.

z = −1

2
gt2 + ż0t+ z0; t =

x− x0
ẋ0

To find the orientation of the end effect, we require the inbound
velocity vector at the end effector and the required outbound
velocity vector to get the ball to the target. We first perform a
rotation about the world frame z axis to align x′ with the average
of the incoming and outgoing xy trajectory. Then we rotate about
the y′ axis to align the z′ orientation of the end effector. The first
rotation about the z axis is given by:

Rθ =

cθ −sθ 0
sθ cθ 0
0 0 1


θ =

1

2
(θin + θout)

Where θin = atan2(ẏ, ẋ) and θout = atan2(yee − ytarget, xee −
xtarget). The rotation about the y′ axis is slightly more involved.
We first calculate the inbound rotation using:

φin = atan2(V ′y , V
′
x)

V ′ =

 cθin sθin 0
−sθin cθin 0

0 0 1

Vee
Where Vee is the predicted velocity at the end effector. We then find
the angle out, φout. This is given by φout = atan2(h, d) where h
is the difference in absolute z height between the target position of
the ball and the end effector position and d is the euclidean XY
distance to the target. As an aside, the above expression for φout
is a dramatic simplification from when we include the presence of
gravity. The true expression required to find φout is given by:

d =
v0 cos(φout)v0 sin(φout)+

√
(v0 sin(φout))

2+2gh

g

We solve this iteratively by incriminating up guesses of φout
until we are within some threshold of the desired distance to the
target. This is computationally expensive compared to the simplified
expression without gravity that we presented previously. We then
use the average of these two φ angles. φ = 1

2
(φin−φout). It should

be noted that the sign here is intentional as the φ’s have different
signs.

Rφ =

cφ 0 −sφ
0 1 0
sφ 0 cφ


Finally, we multiply the two rotation matrices together to find the

required orientation of the end effector. It is important to note that
due to the initialization of the robot in our world, we have to apply
an additional rotation matrix which we omit here for brevity. The
final expression for the rotation matrix for the robot end effector is
given by Rdesired = RθRφ.

II. CHALLENGES

One of the main challenges of this project was controlling all
four robot arms with one controller. We needed to make sure that
we were able to properly predict which robot was needed next so
that we could send control torques to only one robot at a time.
This was done as mentioned previously and was planned from
the start. However, in our original implementation, computation
was still being done for the other robots and greatly reduced the
responsiveness of the system. This proved to be a great challenge
in the early stage of our project that was resolved with the guidance
of the teaching team. With their help, our simulation and controller
code only made movements and computation for one robot at a
time.



Another challenge occurred with our available computing power.
Our functions for getting the correct position and orientation were
in particular very computationally expensive, with multiple square
roots. Therefore, we found it extremely important to keep track of
when we need to predict final position so that we only call that
function once, getting rid of unnecessary computations.

We also needed to slow down the overall speed of the ball and
increase the speed of the robot arms so that the program had time
to compute the ideal end-effector position and orientation and then
move the appropriate robot arm into this configuration. The first
step in increasing the robot speed turned out to be turning off the
OTG flag, as adjusting the gains for more speed quickly made an
unstable system. This change allowed the end-effector to move in
a more direct path to its target. However, this was not enough,
and so we reduced the ball’s velocity. For this to occur, gravity
was removed from the system and not accounted for in controls or
prediction. This meant the ball would move in straight trajectories
and so the magnitude of velocity could be reduced while ensuring
it moved in the correct direction for any robot to respond to it.

Finally, the overall logic and randomness of game play was
complicated. As stated earlier, we needed several different boolean
variables to determine the various states of the game and to make
sure we didn’t call computationally expensive functions more than
necessary. This took some time initially to ensure it ran properly
as we started. Towards the end, once passing could be included,
we would have to walkthrough the state machine thoroughly for
debugging issues that came up.

III. RESULTS AND NEXT STEPS

Overall, we found this project to be challenging yet worthwhile.
A video of our simulation can be found at the link below. Due to
the complexity of the system for our computers, the simulation was
intentionally coded to include a slowdown factor. This along with
the decreased ball velocity, led to an approximate 15x- speed up
on the video.
https://tinyurl.com/SpikeballRobot
In the end, our robot controller is capable of playing a full game

of Spikeball with spiking and passing. Potential improvements for
the projects can range from game logic and decision making to
computation and complexity. By improving the efficiency of the
program, it would be possible to incorporate gravity back into
the system. Once gravity is included, the existing position and
orientation prediction functions can still work. With the robots
correctly playing Spikeball with gravity implemented, it would then
be possible to incorporate more decision making and competitive
play for the robots.

IV. ACKNOWLEDGEMENTS

We want to thank Professor Oussama Khatib and our two TAs
William Chong and Adrian Piedra for their immense and consistent
help and support throughout this quarter.

https://tinyurl.com/SpikeballRobot

	Final Implementation
	Background
	Simulation and Environment
	Game Play Logic
	Desired Robot
	Desired Position and Orientation

	Challenges
	Results and Next Steps
	Acknowledgements

